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INTRODUCTION TO

BIOMECHANICS, BIORHEOLOGY AND BIOMATERIALS :

FROM THE CELL TO THE ORGAN
C. ODDOU, Tomsk, 2007

Lectures survey

Lecture I – Brief historical overview from our experiment in Paris

I. 1 Origin of the speaker (Eiffel tower) & objective of the cursus

I. 2 Panorama of our biomechanics research activity 

I. 3 An adaptive & evolutive materials: The Bony Tissue

I. 4 Bone Remodeling

I. 5 Numerical simulation

I. 6 Bone Ultrasound Characterization

I. 7 Acoustics in porous media (BIOT, 1956)

I. 8 Ultrasound velocity: Computed results

I. 9 Tissue rheology of dermis substitutes

I. 10 Tissue Engineering (T. E.)

I. 11 T. E.: Animal implantation. First encouraging results 

I. 12 T. E.: Problematics

I. 13 T. E.: Porous Media & Biological Tissue

I. 14 T. E.: Microfluidics & cells

I. 15 Cell Biomechanics and Tensegrity Structures

I. 16 Tensegrity structure & Cytoskeleton

I. 17 Technology transfer

I. 18 Training in Biomedical Engineering mixing Life and Physical Sciences

Lecture II – Elements of biosolids rheology.

II. 1 Title &objective: A Brief Review in “Solid” Tissue Biomechanics

II. 2 « Non conventional » & « intelligent » structural material

II. 3 « complex structure » at all the observation length scale: bone

II. 4 idem for tendon and muscle

II. 5 idem for the CV system: heterogeneity and multi-components

II. 6 Heterogeneity & Multi-components for bone and introduction to the concepts of mechanical tests on samples
II. 7 Concepts in Continuous Media 
II. 8 Structure mechanics (+ Moens-Korteweg) 
II. 9 Viscoelasticity/Poroelasticity (1)

II. 10 Viscoelasticity/Poroelasticity (2)

II. 11 Viscoelasticity/Poroelasticity (3)
II. 12 Viscoelasticity/Poroelasticity (4)
II. 13 Fracture mechanics
II. 14 Fracture mechanics (following)
II. 15 Growth & Remodeling: residual stresses in arteries
II. 16 Growth & Remodeling in bones
II. 17 Growth & Remodeling in bones (following)
II. 18 Mechanobiology & Biomechanics: scaling parameters
Home works:

Moens-korteweg expression for pressure wave velocity in vessels 
Lecture III – Biofluid Rheology & Cell Biomechanics

III. 1 Title & objective
III. 2 Elements of Fluid Rheology

III. 3 Elements of Fluid Rheology. Harmonic excitation
III. 4 Elements of Fluid Rheometry

III. 5 Biofluid Rheology. Particle suspension (blood). composition
III. 6 Biofluid Rheology. Particle suspension (blood) / following (2)

III. 7 Biofluid Rheology (following). Particle suspension (blood) / following (3)

III. 8 Biofluid Rheology (following). Polymer solution (synovial fluid)

III. 9 Interstitial Fluid Flow. Darcy’s law. Carman-Kozeny eq.

III. 10 Mechanotransduction & Remodeling

III. 11 Cell and Tissue Mechanobiology
III. 12 Cell Mechanical Loading
III. 13 Cytoskeleton Components
III. 14 Cytoskeleton Components (following 2)
III. 15 Cytoskeleton Components (following 3)
III. 16 Cytoskeleton Components rheology
III. 17 Cell Models
III. 18 Cell Model: Alveolar Fibrous Solid

III. 19 Tensegrity Structure presentation

III. 20 Cell Model: 2/3 D Simple Tensegrity Structure

III. 21 Tensegrity Complex Models

III. 22 Simple Tensegrity Model Results

III. 23 Rheology Cell Experimental Data

Home works:

Model of fibrous tissue (cytoskeleton, ECM, conjunctive tissue) as foam
Lecture IV – Biofluid mechanics & cardio-vascular system
IV. 1. Title & objective: quantitative and modern physiology of the CV system

IV. 2. Specific Elements of Fluid Mechanics

IV. 3. Introducing CV system: Complex & multi-physics analysis

IV. 4. Cardiovascular system gross anatomy

IV. 5. Pressure distribution within the network

IV. 6. Flow rate distribution within the network

IV. 7. The cardiac pump: a controlled pressure generator

IV. 8. Complex intra-cardiac fluid flow

IV. 9. Complex solid structure

IV. 10. Complex fluid-structure interaction processes (1)

IV. 11. Complex fluid-structure interaction processes (2)

IV. 12. Complex time evolution of pressure and volume

IV. 13. Complex time evolution of pressure & flow

IV. 14. Fiber ultra structure 

IV. 15. Cardiac cell supra-level: The electrical conduction system

IV. 16. Cardiac cell sub-level: The Actin-Myosin Molecular Complex

IV. 17. Muscle cell & fiber micro - mechanics (1) 

IV. 18. Muscle cell & fiber micro – mechanics (2) 

IV. 19 Muscle cell & fiber micro – mechanics (3)

IV. 20. Fiber microstructure 

IV. 21. Myocardium rheology: The concept of Fluid-Fiber-Collagen Matrix Composite

IV. 22. Tissue growth, healing & residual stresses

IV. 23. Left Ventricle mechanics (1)

IV. 24. Left Ventricle mechanics (2)

IV. 25. Pressure - Volume loop

IV. 26. Left Ventricle energy function

IV. 27. Energetics of the heart

Home works:

The concept of windkessel.

Lecture V – Biosolid mechanics & osteo-articular system.

Elements in biomechanics of movement

V. 1. Title & objective: A plea for engineering models in Osteo – Articular and Movement Biomechanics

V. 2. Introduction: mechanics at different length scales, coupled phenomena.
V. 3. Bone physiology.
V. 4. Diversity in bone properties and functions.
V. 5. Bone structure (1): Cortical Bone

V. 6. Bone structure (2)

V. 7. Bone structure (3)
V. 8. Collagen microstructure

V. 9. Difference mineral content/material stiffness as approached by SEM and USM
V. 10. Trabecular bone structure

V. 11. Human bone mass composition
V. 12. Mechanical properties of the components
V. 13. Bone cells
V. 14. Remodeling events sequence (1)
V. 15. Remodeling events sequence (2)
V. 16. Trabecular bone turn-over

V. 17. Mechanical properties (Fresh Human Bone)
V. 18. Total bone segment torsion
V. 19 Acoustic mechanical properties (Bovine vs. Human Bone)
V. 20. Anisotropy
V. 21. Growing bone properties as a function of the age
V. 22. Fracture work vs.  Mineral content

V. 23. Viscoelasticity

V. 24. Viscoelasticity (following)

V. 25. Bone fracture experiments

V. 26. Bone fracture mode
V. 27. Fatigue fracture
V. 28. Local remodeling and micro-defects

V. 29. Wolff law

V. 30. Remodeling example in orthopedics
V. 31. Lazy zone concept (Admissible strain window)

V. 32. Remodeling processes diagram
V. 33. Remodeling & Prosthesis design
V. 34. Conclusion: a plea for models
TUTORIAL I - BLOOD VESSEL REMODELING

[image: image155.bmp]
Fig. 1. Response of the blood vessels to increases in pressure or intima shear stress. Significant increase in circumferential stress within the media, which are generated by increase in intraluminal pressure, lead to noticeable thickening of the vessel wall (vascular hypertrophy). On the other hand, in case of  large shear strains of the intima site, which are generated by consequent increase in flow rate within the vessel, it is noticed an increase in the vessel diameter. In general the response in vascular remodeling aims to restore the normal level of corresponding stresses (circumferential elongation stresses within the media generated by the pressure, viscous shear stresses on the intima produced by the flow).

The blood vessels respond to changes in their mechanical environment, that is transmural pressure and flow rate, by remodeling phenomena of the vessel wall and growth in the vascular tissue (changes in wall geometry and possibly alterations in the constituting chemical elements). The final objective of these processes aims to the preservation of normal physiological level of stresses acting upon the wall tissue: normal stresses in circumferential elongation  
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 within the sample and shear stress 
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 at the lumen surface. The intimate active processes governing this adaptation phenomenon remain somewhat controversial and largely unknown at the microscopic cellular level. The objective here is to propose some engineering macroscopic concepts and models in order to participate to the debate.
I. Evaluation of the normal (physiological) levels of elongation and shear stresses within arterial wall. 
I. 1. Briefly define (by simple schematic drawings instead of long writings) the term media and intima previously mentioned and name the cells implicated within those media.

I. 2. By using, on the one hand, the Laplace law
 and, on the other, the Poiseuille law
 , evaluate these reference stresses 
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 under normal physiological conditions (
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, cf. Fig. 2).
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Fig. 2. One dimension model of a representative element of the vascular wall. In case of wall hypertrophy due to arterial hypertension, the radius 
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 of the blood duct is generally not significantly varying. That leads to values quasi equal to zero everywhere for the fields of displacement 
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I. 3. Compare the obtained results and discussed them in respect to the cell mechanotransduction effects.

II. Concepts in residual stress and strain. Evolution of the materials in absence of control.

We intend to study the remodeling phenomena related to the hypertension which can be approached by the one dimension model as schematized on the Fig. 2: analysis of the mechanical behavior of a torus - shaped sample taken from the wall. As previously mentioned in case of hypertrophy by hypertension the radius is not significantly changing, implying that the wall has to be maintained in a state of quasi-constant circumferential deformation. Moreover, the change in stress has to be controlled in order to maintain a quasi-constant value of the order of the control physiological one
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  adopted here are briefly recalled in the joined footnote 

II. 1. Give a dimension analysis of the equation (5) and thus deduce the dimensions of gain function 
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 and coefficient of remodelling resistance
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. What are the legal units with which to express their magnitude?
II. 2. Consider the case where the control mechanism is not working, that is
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, and that an initial stress 
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 is suddenly generated by pressurization of the vessel. Show
 then that this initial stress relaxes to a zero value following an exponential and decreasing time evolution with the following characteristic time:
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II. 3. Knowing that this relaxation process without control would correspond to the genesis of the organ and imply a characteristic time 
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of the order of one year or more (
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, give an evaluation of the coefficient of resistance to remodelling 
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II. 4. Remark: The time 
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 we have introduced here as well as the time 
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which will be mentioned in III. 1, are characterizing the “cellular machinery” and its action upon the tissue growth (
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) and remodeling (
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). In this regard, these times are relevant from the “active properties” of the tissue. Concerning the “passive “properties” of these polyphasic, fibrous and porous media, they will be described by the “classical” effects in relation with:

· the dynamic viscosity 
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of these media, following the relation:
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where 
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 design the viscosity coefficient related to the friction and relaxation mechanisms of the constitutive macromolecules.

· the porosity and the polyphasic nature of this medium, that lead to
:
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where 
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 is the intrinsic permeability of this tissue.

Give an evaluation of these time 
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and compare the results to the aforementioned value of
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III. Time evolution of the tissue under the action of a linear control mechanism 
Consider a control mechanism characterizing the instantaneous mechanotransduction response of the cells as the following linear expression:
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where the constant 
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 is the gain of the process.

III. 1. Show that the calculations development avers to be slightly more complex than what was made in II. 2. and that, following the same procedure we obtain a first order differential equation with constant coefficients but containing a non null second member. It comes:
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where the characteristic time 
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is now given by :
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and the stress at large time 
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 is written as :
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Montrer que les choses se compliquent légèrement par rapport à II. 2. et que l’on aboutit alors en suivant la même procédure à une équation différentielle à coefficients constants du premier ordre mais avec second membre, équation du type :
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où le temps caractéristique 
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 a maintenant pour expression :
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et la contrainte au temps long 
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 est donné par :
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III. 2. (For the experts in math
 !) 
Show that the solution of eq. (12) is given by
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III. 3. 

In the case where 
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· Give the value of 
[image: image51.wmf]T

¢

and make a comment in function of your knowledge about the cell metabolism, on the one part, and about the vascular hemodynamics, on the other.

· Under the same conditions, schematically draw the time evolution of the stress as given by (15) in presence of control, and by (8) in absence of control when assuming that 
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· Show that in that case of control the check reference value 
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 is rapidly and closely approached when the gain coefficient is high.
TUTORIAL II

“simple” MODEL OF “TISSUE REMODELING” IN BONE TISSUE ENGINEERING

Recent research in Tissue Engineering is focused towards the development of performing theoretical and experimental tools allowing the replacement, repair and healing of biological tissue. These studies are implying in vitro and in vivo analysis of cellular metabolism in the presence of tri dimensional environment of porous biomaterials. The major objective in this framework is the identification of the “best” processes and environment allowing the cells to have efficient proliferation, differentiation, production or degradation of collagen matrix inside porous substrates, etc…, i.e. to perform successful “remodeling of the organoïd. For in vitro techniques applied to artificial substrates (biocompatible and bioresorbable) in which cells are seeded, apparatus such as bioreactors have been developed allowing a control of the nutriment perfusion (O2 and glucose, for instance) and the mechanical environment of the cell (local shear stresses).

In vitro genesis and remodeling of bone tissue can be considered as an optimization process inside a porous “active” structure (substrate where cells are imbedded) in response to mechanical and biochemical stresses. Such a structure can be viewed as constituted of an inhomogeneous and multiphase material whose porosity 
[image: image54.wmf]f

 and consequently porosity
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) can vary with time and space. Indeed, the overall evolution of those artificial media results from a complex balance between two opposite phenomena: a mechanism of tissue degradation (by cells called osteoclasts) and new extra cellular matrix formation (by cells called osteoblasts). This specific phenomenon give to the medium properties of a non linear dynamic system aimed to maintain some characteristic control parameter. Such a parameter, in relation with the “applied stresses”, is to be looked for in the kinematics, dynamics or energetics of the medium.

In order to analyze this phenomenon, we consider the “simple model of growth under perfusion” as shown on Figure 1. Such a model was developed in order to study the stability of the process which can diverge, under certain circumstances, and thus lead to a sample incorrectly prepared. It is assumed that the perfusion flow (of flow rate 
[image: image56.wmf]Q

 at the mesoscopic considered scale) carry the oxygen towards the cells. This element, among others, is vital for the cell metabolism, particularly for the partial obstruction or degradation of the porous substrate (here represented at this scale by a cylindrical pore whose the wall covered by the cells is the site of tissue degradation or generation). Notice here that other events such as cell division, motility and differentiation are not considered in this approach.
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Fig 1. Scheme of the remodeling process in the substrate for engineered bone tissue.

This algorithm displays the fundamental processes of cell matrix interactions which, through the remodeling phenomena (substrate destruction and matrix genesis inside the pores), is based on the local fluid flow properties and consequently on the local hydraulic resistance (characterizing the internal architecture of the porous substrate). The algorithmic mechanism has to stipulate that this physical variable has a rate which is an “objective function” 
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 of the « mechanical and biochemical stimuli” 
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 which are generated by the perfusion flow. The stimulus 
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 has to be related with the flow rate which determines the magnitude of the major factors influencing the cell remodeling processes (supply of oxygen with concentration 
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where 
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 and 
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 are constants characterizing the operating remodeling processes whereas the scalar quantity 
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represents the mechanical and biochemical stimulus. In a first approach, we will take the stimulus 
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as representative of the dissipation rate of the mechanical energy within the tissue, neglecting the chemical energy dissipated within cells. So, at the scale of the model:
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The model elements [1] and [2] (section area 
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, same length 
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 in such a way that the total flow rate is 
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The remodeling equations given in (2) and (3) are successively applied for the two parts of the system. Those parts are separated by the cell layer assumed to be the site of mechano-transduction effects. Moreover, equation (1) is written for each part leading to the description of this analyzed system as a non linear dynamic one with two degree of freedom, the state of which being defined by 
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 the values of the hydraulic resistance of each constitutive element.

1) Give the expression of the total hydraulic resistance of the system as a function of the element resistances: 
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2) Separately writing equations (2) and (3) for the two parts, substrate [1] and pore [2], show that this model dynamics is described by a set of non linear differential equations which are coupled, as follows:
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 EMBED Equation.3  [image: image78.wmf]

 EMBED Equation.3  [image: image79.wmf]
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- Give the formula for 
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3)
Under conditions where
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 which can possibly be reached by the system.

4)
Under these previous conditions associated with the assumption
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, the stability of this system equilibrium can be analyzed by the linearization of the equations (4) in the vicinity of this equilibrium state for which
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. The set of equations after linearization is thus written:
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where 
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- Give the explicit expression of 
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 and find the condition under which the linearized system is stable.

- Taking into account the numerical value characterizing the properties of such a system at this mesoscopic scale, find if it is stable or unstable.

5)
In fact, the fig. 2 shows that the system can reach, according to the given initial conditions, two other states of equilibrium (
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) for which one of the element presents no hydraulic resistance whereas the other takes a finite value for its resistance.
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Fig. 2. Model state diagram.

- By the examination of the fig 2, give approximate expressions of 
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6) 
A. N.: 
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- Give the condition relative to the initial values of the pore diameter 
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 in order that the situation described in 5) be effective. If not both the two resistances would tend to indefinitely increase, leading to an overall system entirely unstable and diverging.
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� Laplace law : In case of a thin cylindrical shell with thickness � EMBED Equation.3  ��� and only one curvature radius � EMBED Equation.3  ���, it is easily shown by writing the equilibrium balance of forces  that the mean circumferential stress � EMBED Equation.3  ���(averaged over the wall thickness) and the transmural pressure � EMBED Equation.3  ���are related by the equation:


� EMBED Equation.3  ���						(1)





� Poiseuille law: A steady laminar and developed flow within a cylindrical tube presents a parabolic profile in velocity radial distribution. Consequently, the viscous stress field inside the flow and at the vessel wall displays a linear radial distribution. Then, the stress acting at the wall has the following expression:





� EMBED Equation.3  ���						(2)





relation in which � EMBED Equation.3  ���refers to the mean velocity across the tube section.





� The foreseen quantifications are requiring not only a numerical value but also the designation of the unit in which these physical variables are expressed. Contrarily to the life sciences, the engineers are expressing these variables in the MKS (meter, kilogram, second) unit system. Do not forget: � EMBED Equation.3  ���





� Cf. for instance : A. DiCarlo, S. Quiligotti, Growth and balance.  Mechanics Research Communications 29, pp 449-456, 2002.





� The way to analyze the mechanical behavior of an « active » material having « residual stresses and strains » in its initial configuration (at the beginning of the mechanical tests where no external load is applied) can be described as follows. Firstly, let us remind that we don’t know the properties of the reference state from which the kinematics of the deformations can be deduced. Let’s describe the formalism (cf. joined Fig.) as such :





�


Fig. 3. Scheme of the basic kinematics concepts used to describe the behavior of “active” materials.





The elastic (or effective) strain � EMBED Equation.3  ��� is obtained from both the observable (or apparent) strain � EMBED Equation.3  ��� and the residual (or neutral) strain � EMBED Equation.3  ���. This last item characterizes the overall history of the materials preceding the observation and includes thermal, chemical and biological effects acting on the sample during the long period of time. Then :


� EMBED Equation.3  ���						(3)


Knowing the elasticity coefficient � EMBED Equation.3  ��� of the materials, we can write :


� EMBED Equation.3  ���						(4)


In this case, we will consider that the local residual strains (and their related time evolution) are the result of the activity of the biological cells and can be considered as produced by an « external agent » acting on the medium. Such an evolution velocity is furthermore assume to be depending of two terms :


- magnitude of the current value of the local internal stress,


– value of � EMBED Equation.3  ��� control function (or gain function), which will be commented later on.


It then comes the following equation :


� EMBED Equation.3  ���				(5)


relation in which the constant � EMBED Equation.3  ��� represents the coefficient characterizing the resistance to the change in reference state (remodeling in biology).





� To do this, combine equations (3), (4) and (5) when written with the imposed conditions (� EMBED Equation.3  ���,� EMBED Equation.3  ���) in such a way to end with a unique differential equation in the unknown function � EMBED Equation.3  ��� as :


� EMBED Equation.3  ���		(7)


It is then easily shown that the solution of such an equation can be written as :


� EMBED Equation.3  ���					(8)





� Cf. for instance : Naili S., Oddou C., Geiger D., A method for the determination of mechanical parameters in a porous elastically deformable medium : application to biological soft tissues, Int. J. Solid. Struct., 35 (34-35), 4963-4979, 1998.





� The experts in math should know that the solution of a first order differential equation with constant coefficients and given second member is obtained by summation of the general solution of the equation without second member and a particular solution of the general equation.


�It is recalled that within a porous medium the porosity is defined as the ratio between the “volume of the pores” � EMBED Equation.3  ��� and the “total volume” � EMBED Equation.3  ���:


� EMBED Equation.3  ���


Moreover, the permeability � EMBED Equation.3  ���of such a medium is defined by the Darcy’s law:


� EMBED Equation.3  ���


where:	� EMBED Equation.3  ��� is the velocity of perfusion,


	� EMBED Equation.3  ��� the perfusion flow rate,


	� EMBED Equation.3  ��� the area of the sample surface (section perpendicular to the main direction of the flow)


	� EMBED Equation.3  ��� the dynamic viscosity coefficient of the fluid,


	� EMBED Equation.3  ��� the pressure drop through the sample (in the direction of the flow),


	� EMBED Equation.3  ��� the sample length


« elementary and ideal » models are showing that this permeability � EMBED Equation.3  ���is relation with the structural properties of the medium as follows :


� EMBED Equation.3  ���


where:	� EMBED Equation.3  ���is the tortuosity of the pores,


	� EMBED Equation.3  ��� is the specific wall area of the pores (pore wall area by unit volume of the porous medium) and � EMBED Equation.3  ���is the pore diameter.


It is to be noticed here that a approximate value of the permeability coefficient is:


� EMBED Equation.3  ���


At the beginning of the remodeling process, and without large amount of collagen fibers, the flow inside the pore is governed by the Poiseuille law :


� EMBED Equation.3  ���


with � EMBED Equation.3  ���diameter of the pores within the substrate.


One can remark furthermore that the formulation of the Darcy and Poiseuille laws lead to the definition of the hydraulic resistance of a porous sample of section area � EMBED Equation.3  ���, length � EMBED Equation.3  ��� and permeability � EMBED Equation.3  ���as:


� EMBED Equation.3  ���				(1)
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